skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Holzknecht, Liz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose a formation pathway linking black holes (BHs) observed in gravitational-wave (GW) mergers, wide BH–stellar systems uncovered by Gaia, and accreting low-mass X-ray binaries (LMXBs). In this scenario, a stellar-mass BH binary undergoes isolated binary evolution and merges while hosting a distant, dynamically unimportant tertiary stellar companion. The tertiary becomes relevant only after the merger, when the remnant BH receives a GW recoil kick. Depending on the kick velocity and system configuration, the outcome can be: (1) a bright electromagnetic (EM) counterpart to the GW merger; (2) an LMXB; (3) a wide BH–stellar companion system resembling the Gaia BH population; or (4) an unbound isolated BH. Modeling the three-body dynamics, we find that ∼0.02% of LIGO–Virgo–KAGRA (LVK) mergers may be followed by an EM counterpart within ∼10 days, produced by tidal disruption of the star by the BH. The flare is likely brightest in the optical–UV and lasts for days to weeks; in some cases, partial disruption causes recurring flares with a period of ∼2 months. We further estimate that this channel can produce ∼1%–10% of Gaia BH systems in the Milky Way. This scenario provides the first physically motivated link between GW sources, Gaia BHs, and some X-ray binaries, and predicts a rare but robust pathway for EM counterparts to binary BH mergers, potentially detectable in LVK’s O5 run. 
    more » « less
    Free, publicly-accessible full text available October 8, 2026